SPECIMEN MATERIAL

AS CHEMISTRY (7404/1)

Paper 1: Inorganic and Physical Chemistry

Specimen 2015 Session Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Data Sheet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer all questions.
- Show all your working.

Information

The maximum mark for this paper is 80.

Please write clearly, in block capitals, to allow character computer recognition.																	
Centre number					Ca	and	idate	e nu	ımb	er [
Surname																	
Forename(s)																	
Candidate sign	ature _																-

There are no questions printed on this page
DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED
ANSWER IN THE SPACES PROVIDED

	Section A
	Answer all questions in this section.
1	This question is about the elements in Group 2 and their compounds.
0 1 . 1	Use the Periodic Table to deduce the full electron configuration of calcium. [1 mark]
0 1 . 2	Write an ionic equation, with state symbols, to show the reaction of calcium with an excess of water. [1 mark]
0 1 . 3	State the role of water in the reaction with calcium. [1 mark]
0 1 . 4	Write an equation to show the process that occurs when the first ionisation energy of calcium is measured. [1 mark]
0 1 . 5	State and explain the trend in the first ionisation energies of the elements in Group 2 from magnesium to barium. [3 marks]
	Explanation

	Table 1 gr	ves the relative abundance		se isotopes.		
		Table	1			
		Mass number of isotope	32	33		
		Relative abundance / %	91.0	1.8		
0 2 . 2	Describe h	now ions are formed in a tim	Mass nu ne of flight (TC		pectrometer.	[2 marks]

0 2 . 3	A TOF mass spectrometer can be used to determine the relative molecular mass of molecular substances.
	Explain why it is necessary to ionise molecules when measuring their mass in a TOF mass spectrometer.
	[2 marks]
	Turn over for the next question

kJ mol⁻¹

0 3 . 1	Write an equati to the standard				eaction wi	th enthalpy change equal [1 mark]
0 3 . 2	Explain why CF	- ₄ has a bond a	ngle of 10	9.5°.		[2 marks]
0 3 . 3	Table 2 gives s	some values of	standard e	enthalpies o	of formation	n ($\Delta_{\mathrm{f}} \mathcal{H}^{\Theta}$).
			Table 2			
	Sub	ostance	F ₂ (g)	CF ₄ (g)	HF(g)	
	$\Delta_{\mathrm{f}}H$	l [⊖] / kJ mol ^{−1}	0	-680	-269	
		$_{2}H_{6}(g) + 7F_{2}(g)$	ı) →> : rd enthalpi	2CF ₄ (g) +	6HF(g)	ol ^{–1} . ole 2 to calculate the [3 marks]

Standard enthalpy of formation of $C_2H_6(g) =$

7

0 3 · 4 Methane reacts violently with fluorine according to the following equation.

$$CH_4(g) + 4F_2(g) \longrightarrow CF_4(g) + 4HF(g) \Delta H = -1904 \text{ kJ mol}^{-1}$$

Some mean bond enthalpies are given in **Table 3**.

Table 3

Bond	C–H	C–F	H–F
Mean bond enthalpy / kJ mol ⁻¹	412	484	562

A student suggested that one reason for the high reactivity of fluorine is a weak F–F bond .

Is the student correct? Justify your answer with a calculation using these data.

[4 marks]

Turn over for the next question

4	Colourle									q) re	eac	t to	forn	n a	n o	ran	ıge	so	luti	on	of Z	Z (ac	1)
	accordi	ng to	o tne	e toli	owir	ng e	qua	tion	۱.														
		X	(aq)) +	2 Y (a	aq)	$\overline{}$		Z (a	q)	Δ	\ <i>H</i> =	-20) k	J m	ol ⁻	1						
	A stude 0.50 mc										0 m	ol c	of X (aq) to	a	sol	utic	n c	on	tair	ning	
	After 30	sec	cond	s, th	ere	was	no	fur	the	r ch	_			oui	ſ.								
	The am	oun	t of 2	Z (aq) at	equ	ilibri	um	Wa	as O	.20	mol	l.										
0 4 . 1	Deduce	the	am	ount	s of	X (a	q) a	nd	Y(a	aq) a	at e	quil	ibriu	ım.									
																						[2	marks]
	Amou	int o	f X (:	aa) =	=				mo	ı		Δn	noui	nt c	of V	(ac	- (r	=					mol
	7 (11100		1 24(0	4 4)								, vi	i ioui		, ·	(α	1/						
0 4 . 2	On the	arid	belo	w, c	Iraw	a q	rapł	n to	sh	ow	how	v the	e an	าดเ	ınt (of Z	Z (a	a) (cha	ng	ed [·]	fron	n the
	time of i																•	17		Ŭ			
																						[3	marks]
																	H						
									П														
																Н							
							Ш					Ш											
								Ħ															
		H									H	Н		Н			Ħ	H					
												Ш											
									H									H					

0 4 . 3	The student prepared another equilibrium mixture in which the equilibrium concentrations of $\bf X$ and $\bf Z$ were: $\bf X(aq) = 0.40 \text{ mol dm}^{-3} \text{ and } \bf Z(aq) = 0.35 \text{ mol dm}^{-3}.$	
	For this reaction, the equilibrium constant $K_c = 2.9 \text{ mol}^{-2} \text{ dm}^6$. Calculate a value for the concentration of Y at equilibrium. Give your answer to the appropriate number of significant figures.	[3 marks]
	[Y] =	mol dm ⁻³
0 4 . 4	The student added a few drops of Y (aq) to the equilibrium mixture of X (aq), Y Z (aq) in Question 4.3 . Suggest how the colour of the mixture changed. Give a reason for your answ	
	·	[3 marks]
	Colour change	
	Reason	
0 4 . 5	The student warmed the equilibrium mixture from Question 4.3 .	
	Predict the colour change, if any, when the equilibrium mixture was warmed.	[1 mark]

5	This question is about the chemical properties of chlorine, sodium chloride and sodium bromide.
0 5 . 1	Sodium bromide reacts with concentrated sulfuric acid in a different way from sodium chloride.
	Write an equation for this reaction of sodium bromide and explain why bromide ions
	react differently from chloride ions. [3 marks]
	[3 marks]
	Equation
	Explanation
	'
	1
0 5 . 2	A colourless solution contains a mixture of sodium chloride and sodium bromide.
	Using aqueous silver nitrate and any other reagents of your choice, develop a
	procedure to prepare a pure sample of silver bromide from this mixture. Explain each step in the procedure and illustrate your explanations with equations,
	where appropriate. [6 marks]
	[o marke]

0 5 . 3	Write an ionic equation for the reaction between chlorine and cold dilute sodium hydroxide solution. Give the oxidation state of chlorine in each of the chlorine-containing ions formed. [2 marks]
	Turn over for the next question

6	This question is about reactions of calcium compounds.
0 6 . 1	A pure solid is thought to be calcium hydroxide. The solid can be identified from its relative formula mass.
	The relative formula mass can be determined experimentally by reacting a measured mass of the pure solid with an excess of hydrochloric acid. The equation for this reaction is
	$Ca(OH)_2 + 2HCl \longrightarrow CaCl_2 + 2H_2O$
	The unreacted acid can then be determined by titration with a standard sodium hydroxide solution.
	You are provided with 50.0 cm ³ of 0.200 mol dm ⁻³ hydrochloric acid. Outline, giving brief practical details, how you would conduct an accurate experiment to calculate the relative formula mass of the solid using this method.
	[8 marks]

0 6 . 2	A 3.56 g sample of calcium chloride was dissolved in water and reacted with an excess of sulfuric acid to form a precipitate of calcium sulfate.
	The percentage yield of calcium sulfate was 83.4%.
	Calculate the mass of calcium sulfate formed. Give your answer to an appropriate number of significant figures. [3 marks]
	Mass of calcium sulfate formed = g
	Turn over for the next question

7	A sample of pure $\mathrm{Mg}(\mathrm{NO_3})_2$ was decomposed by heating as shown in the equ below.	ation
	$2Mg(NO3)2(s) \longrightarrow 2MgO(s) + 4NO2(g) + O2(g)$	
0 7 . 1	A 3.74×10^{-2} g sample of Mg(NO ₃) ₂ was completely decomposed by heating.	
	Calculate the total volume, in cm ³ , of gas produced at 60.0 °C and 100 kPa. Give your answer to the appropriate number of significant figures. The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$.	marks]
0 7 . 2		cm ³
	the mass of Mg(NO ₃) ₂ used. Suggest one practical reason for this.	[1 mark]

$\hat{}$	_	_ 4		_		
•	^	~1	•	_	n	F

				Secti	on B			
			Answer	all question	ons in this	section.		
Only one	answer	per ques	stion is allow	ed.				
For each	answer	complete	ely fill in the o	circle along	side the	appropriate a	nswer.	
CORRECT M	ETHOD	● WRC	ONG METHODS	፟ • •	\Rightarrow ϕ			
If you wa	nt to cha	ange your	r answer you	must cros	ss out you	ır original ans	wer as shov	vn.
If you wis		ırn to an a	answer previ	iously cros	sed out, i	ring the answ	er you now	wish to select
0 8	Whic	ch of thes	e atoms has	the larges	st atomic i	radius?		[1 mark]
	A	Ar	\bigcirc					
	В	Cl	\bigcirc					
	С	Mg	0					
	D	Na	0					
0 9	Whic	ch of thes	e species is	the best re	educing a	gent?		[1 mark]
	Α	Cl ₂						
	В	Cl⁻						
	С	l ₂						
	D	ľ						

1 0	Which of these pieces of apparatus has the lowest percentage error in the measurement shown?					
	measu	rement snown?				[1 mark]
	A	Volume of 25 cm with an error of ±		ired with a burette	0	
	В	Volume of 25 cm cylinder with an e		ıred with a measuring £0.5 cm³.		
	С	Mass of 0.150 g with an error of ±			0	
	D	0				
1 1	acid. 7	The student is ask	ed to de	vise a method to pre	× 10 ⁻² mol dm ⁻³ hydroch pare a hydrochloric acid g the sample with water	solution
	Which	of these is the cor	rect vol	ume of water that sho	ould be added?	[1 mark]
	Α	45.0 cm ³		0		
	В	95.0 cm ³				
	С	100 cm ³		0		
	D	995 cm ³		0		
1 2	Which	of these species h	nas a triç	gonal planar structure	9?	[1 mark]
	A	PH ₃	\bigcirc			
	В	BCl ₃				
	С	H_3O^{\dagger}				
	D	CH ₃	0			

1 3	Use your understanding of intermolecular forces to predict which of these comhas the highest boiling point.				
	Α	HF		[1 mark]	
	В	HCl			
	С	HBr			
	D	НІ			
1 4		type of bond is ule of BF ₃ ?	formed between N and B when a molecule of $\mathrm{NH_3}$ react	ts with a [1 mark]	
	Α	Ionic.			
	В	Covalent.			
	С	Co-ordinate.			
	D	Van der Waals	s. O		
1 5	Which	of these atoms	has the highest electronegativity?	[1 mark]	
	Α				
	В	Mg			
	С				
	D	Ar C			
1 6	Which	of these atoms	has the smallest number of neutrons?	[1 mark]	
	Α	³ H			
	В	⁴ He			
	С	⁵ He			
	D	⁴ Li			

1 7	Which	of these substances does not show hydrogen bonding?	[1 mark]
	A	HF O	
	В	NH ₃	
	С	CH₃COOH ○	
	D	CHF ₃	
1 8	What is	s the formula of calcium nitrate(V)?	[1 mark]
	A	CaNO ₃	
	В	Ca(NO ₃) ₂	
	С	Ca ₂ NO ₂	
	D	Ca(NO ₂) ₂	
1 9	Which A B	of these elements has the highest second ionisation energy? Na Mg	[1 mark]
	С	Ne 🔾	
	D	Ar	

2 0	Which of the following shows chlorine in its correct oxidation states in the compounds shown?								
	SHOWH	•				[′	1 mark]		
		HCl	KClO ₃	HClO					
	A	–1	+3	+1	0				
	В	+1	- 5	– 1	0				
	С	– 1	+5	+1	0				
	D	+1	+5	– 1	\bigcirc				
2 1		substance is n oncentrated sulf	ot produced in a refuric acid?	edox reaction wh	nen solid soo		reacts		
	Α	H ₂ S				_			
	В	Н							
	С	SO ₂							
	D								
2 2	Which	of the following	g contains the mos	t chloride ions?		['	l mark]		
	A	10 cm ³ of 3.30	$0 \times 10^{-2} \text{mol dm}^{-3} a$	aluminium chlori	de solution				
	В	20 cm ³ of 5.00	$0 \times 10^{-2} \text{ mol dm}^{-3}$	calcium chloride	solution				
	С	30 cm ³ of 3.30	$30 \text{ cm}^3 \text{ of } 3.30 \times 10^{-2} \text{ mol dm}^{-3} \text{ hydrochloric acid}$						
	D	40 cm ³ of 2.50	$10^{-2} \text{ mol dm}^{-3} \text{ s}$	sodium chloride s	solution	0			
	END OF QUESTIONS								

